60 research outputs found

    Efficient UC Commitment Extension with Homomorphism for Free (and Applications)

    Get PDF
    Homomorphic universally composable (UC) commitments allow for the sender to reveal the result of additions and multiplications of values contained in commitments without revealing the values themselves while assuring the receiver of the correctness of such computation on committed values. In this work, we construct essentially optimal additively homomorphic UC commitments from any (not necessarily UC or homomorphic) extractable commitment. We obtain amortized linear computational complexity in the length of the input messages and rate 1. Next, we show how to extend our scheme to also obtain multiplicative homomorphism at the cost of asymptotic optimality but retaining low concrete complexity for practical parameters. While the previously best constructions use UC oblivious transfer as the main building block, our constructions only require extractable commitments and PRGs, achieving better concrete efficiency and offering new insights into the sufficient conditions for obtaining homomorphic UC commitments. Moreover, our techniques yield public coin protocols, which are compatible with the Fiat-Shamir heuristic. These results come at the cost of realizing a restricted version of the homomorphic commitment functionality where the sender is allowed to perform any number of commitments and operations on committed messages but is only allowed to perform a single batch opening of a number of commitments. Although this functionality seems restrictive, we show that it can be used as a building block for more efficient instantiations of recent protocols for secure multiparty computation and zero knowledge non-interactive arguments of knowledge

    Insured MPC: Efficient Secure Computation with Financial Penalties

    Get PDF
    Fairness in Secure Multiparty Computation (MPC) is known to be impossible to achieve in the presence of a dishonest majority. Previous works have proposed combining MPC protocols with Cryptocurrencies in order to financially punish aborting adversaries, providing an incentive for parties to honestly follow the protocol. This approach also yields privacy-preserving Smart Contracts, where private inputs can be processed with MPC in order to determine the distribution of funds given to the contract. The focus of existing work is on proving that this approach is possible and unfortunately they present monolithic and mostly inefficient constructions. In this work, we put forth the first modular construction of ``Insured MPC\u27\u27, where either the output of the private computation (which describes how to distribute funds) is fairly delivered or a proof that a set of parties has misbehaved is produced, allowing for financial punishments. Moreover, both the output and the proof of cheating are publicly verifiable, allowing third parties to independently validate an execution. We present a highly efficient compiler that uses any MPC protocol with certain properties together with a standard (non-private) Smart Contract and a publicly verifiable homomorphic commitment scheme to implement Insured MPC. As an intermediate step, we propose the first construction of a publicly verifiable homomorphic commitment scheme achieving composability guarantees and concrete efficiency. Our results are proven in the Global Universal Composability framework using a Global Random Oracle as the setup assumption. From a theoretical perspective, our general results provide the first characterization of sufficient properties that MPC protocols must achieve in order to be efficiently combined with Cryptocurrencies, as well as insights into publicly verifiable protocols. On the other hand, our constructions have highly efficient concrete instantiations, allowing for fast implementations

    Improving Practical UC-Secure Commitments based on the DDH Assumption

    Get PDF
    At Eurocrypt 2011, Lindell presented practical static and adaptively UC-secure commitment schemes based on the DDH assumption. Later, Blazy {\etal} (at ACNS 2013) improved the efficiency of the Lindell\u27s commitment schemes. In this paper, we present static and adaptively UC-secure commitment schemes based on the same assumption and further improve the communication and computational complexity, as well as the size of the common reference string

    Non-Interactive Secure 2PC in the Offline/Online and Batch Settings

    Get PDF
    In cut-and-choose protocols for two-party secure computation (2PC) the main overhead is the number of garbled circuits that must be sent. Recent work (Lindell, Riva; Huang et al., Crypto 2014) has shown that in a batched setting, when the parties plan to evaluate the same function NN times, the number of garbled circuits per execution can be reduced by a O(logN)O(\log N) factor compared to the single-execution setting. This improvement is significant in practice: an order of magnitude for NN as low as one thousand. % Besides the number of garbled circuits, communication round trips are another significant performance bottleneck. Afshar et al. (Eurocrypt 2014) proposed an efficient cut-and-choose 2PC that is round-optimal (one message from each party), but in the single-execution setting. In this work we present new malicious-secure 2PC protocols that are round-optimal and also take advantage of batching to reduce cost. Our contributions include: \begin{itemize} \item A 2-message protocol for batch secure computation (NN instances of the same function). The number of garbled circuits is reduced by a O(logN)O(\log N) factor over the single-execution case. However, other aspects of the protocol that depend on the input/output size of the function do not benefit from the same O(logN)O(\log N)-factor savings. \item A 2-message protocol for batch secure computation, in the random oracle model. All aspects of this protocol benefit from the O(logN)O(\log N)-factor improvement, except for small terms that do not depend on the function being evaluated. \item A protocol in the offline/online setting. After an offline preprocessing phase that depends only on the function ff and NN, the parties can securely evaluate ff, NN times (not necessarily all at once). Our protocol\u27s online phase is only 2 messages, and the total online communication is only +O(κ)\ell + O(\kappa) bits, where \ell is the input length of ff and κ\kappa is a computational security parameter. This is only O(κ)O(\kappa) bits more than the information-theoretic lower bound for malicious 2PC

    Arya: Nearly linear-time zero-knowledge proofs for correct program execution

    Get PDF
    There have been tremendous advances in reducing interaction, communication and verification time in zero-knowledge proofs but it remains an important challenge to make the prover efficient. We construct the first zero-knowledge proof of knowledge for the correct execution of a program on public and private inputs where the prover computation is nearly linear time. This saves a polylogarithmic factor in asymptotic performance compared to current state of the art proof systems. We use the TinyRAM model to capture general purpose processor computation. An instance consists of a TinyRAM program and public inputs. The witness consists of additional private inputs to the program. The prover can use our proof system to convince the verifier that the program terminates with the intended answer within given time and memory bounds. Our proof system has perfect completeness, statistical special honest verifier zero-knowledge, and computational knowledge soundness assuming linear-time computable collision-resistant hash functions exist. The main advantage of our new proof system is asymptotically efficient prover computation. The prover’s running time is only a superconstant factor larger than the program’s running time in an apples-to-apples comparison where the prover uses the same TinyRAM model. Our proof system is also efficient on the other performance parameters; the verifier’s running time and the communication are sublinear in the execution time of the program and we only use a log-logarithmic number of rounds

    Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits

    Get PDF
    This work introduces novel techniques to improve the translation between arithmetic and binary data types in secure multi-party computation. We introduce a new approach to performing these conversions using what we call extended doubly-authenticated bits (edaBits), which correspond to shared integers in the arithmetic domain whose bit decomposition is shared in the binary domain. These can be used to considerably increase the efficiency of non-linear operations such as truncation, secure comparison and bit-decomposition. Our edaBits are similar to the daBits technique introduced by Rotaru et al. (Indocrypt 2019). However, we show that edaBits can be directly produced much more efficiently than daBits, with active security, while enabling the same benefits in higher-level applications. Our method for generating edaBits involves a novel cut-and-choose technique that may be of independent interest, and improves efficiency by exploiting natural, tamper-resilient properties of binary circuits that occur in our construction. We also show how edaBits can be applied to efficiently implement various non-linear protocols of interest, and we thoroughly analyze their correctness for both signed and unsigned integers. The results of this work can be applied to any corruption threshold, although they seem best suited to dishonest majority protocols such as SPDZ. We implement and benchmark our constructions, and experimentally verify that our technique yield a substantial increase in efficiency. EdaBits save in communication by a factor that lies between 22 and 6060 for secure comparisons with respect to a purely arithmetic approach, and between 2 and 25 with respect to using daBits. Improvements in throughput per second are slightly lower but still as high as a factor of 47. We also apply our novel machinery to the tasks of biometric matching and convolutional neural networks, obtaining a noticeable improvement as well

    Concretely Efficient Large-Scale MPC with Active Security (or, TinyKeys for TinyOT)

    Get PDF
    In this work we develop a new theory for concretely efficient, large-scale MPC with active security. Current practical techniques are mostly in the strong setting of all-but-one corruptions, which leads to protocols that scale badly with the number of parties. To work around this issue, we consider a large-scale scenario where a small minority out of many parties is honest and design scalable, more efficient MPC protocols for this setting. Our results are achieved by introducing new techniques for information-theoretic MACs with short keys and extending the work of Hazay et al. (CRYPTO 2018), which developed new passively secure MPC protocols in the same context. We further demonstrate the usefulness of this theory in practice by analyzing the concrete communication overhead of our protocols, which improve upon the most efficient previous works

    Multiparty Generation of an RSA Modulus

    Get PDF
    We present a new multiparty protocol for the distributed generation of biprime RSA moduli, with security against any subset of maliciously colluding parties assuming oblivious transfer and the hardness of factoring. Our protocol is highly modular, and its uppermost layer can be viewed as a template that generalizes the structure of prior works and leads to a simpler security proof. We introduce a combined sampling-and-sieving technique that eliminates both the inherent leakage in the approach of Frederiksen et al. (Crypto\u2718), and the dependence upon additively homomorphic encryption in the approach of Hazay et al. (JCrypt\u2719). We combine this technique with an efficient, privacy-free check to detect malicious behavior retroactively when a sampled candidate is not a biprime, and thereby overcome covert rejection-sampling attacks and achieve both asymptotic and concrete efficiency improvements over the previous state of the art

    How to Circumvent the Two-Ciphertext Lower Bound for Linear Garbling Schemes

    Get PDF
    At EUROCRYPT 2015, Zahur et al.\ argued that all linear, and thus, efficient, garbling schemes need at least two kk-bit elements to garble an AND gate with security parameter kk. We show how to circumvent this lower bound, and propose an efficient garbling scheme which requires less than two kk-bit elements per AND gate for most circuit layouts. Our construction slightly deviates from the linear garbling model, and constitutes no contradiction to any claims in the lower-bound proof. With our proof of concept construction, we hope to spur new ideas for more practical garbling schemes. Our construction can directly be applied to semi-private function evaluation by garbling XOR, XNOR, NAND, OR, NOR and AND gates in the same way, and keeping the evaluator oblivious of the gate function

    Adding Distributed Decryption and Key Generation to a Ring-LWE Based CCA Encryption Scheme

    Get PDF
    We show how to build distributed key generation and distributed decryption procedures for the LIMA Ring-LWE based post-quantum cryptosystem. Our protocols implement the CCA variants of distributed decryption and are actively secure (with abort) in the case of three parties and honest majority. Our protocols make use of a combination of problem specific MPC protocols, generic garbled circuit based MPC and generic Linear Secret Sharing based MPC. We also, as a by-product, report on the first run-times for the execution of the SHA-3 function in an MPC system
    corecore